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ABSTRACT 

The Moon’s triaxial, gravitational potential and 
i t s  complex, rotary motion (libration) are incorporated in  
the equations of motion of a space vehicle in the near 
vicinity of the Moon. A transformation is derived between 
the space-fixed coordinate system, centered in the Moon, 
i n  which the vehicle’s motion i s  computed, and a coor- 
dinate system fixed in the lunar  body, i.e., a coordinate 
system which rotates with the Moon. Finally, an expression 
is derived for computing the velocity of the space vehicle 
in  the Moon-fixed coordinate system. 

1. INTRODUCTION 

Two lunar missions which will provide important scientific information about the Moon are the orbiting of an 

instrumented probe around the Moon and the landing of a vehicle a t  some designated spot on the Moon’s surface. 

One prerequisite for the success  of either mission i s  that the standard, or “preflight,” trajectory be simulated with 

sufficient realism when the probe is close to the Moon. Sufficient realism can be achieved by incorporating the 

Moon’s triaxial (gravitational) potential and its complex, rotary motion in the equations of motion of the probe. This 

has  been done in the present paper. The resulting set of equations contains a complete and accurate description of 

the Moon’s motion, as well a s  an up-todate representation of the lunar triaxial potential. 1 

‘In order to implement the Ranger Program (semi-soft lunar impact) currently under study at the Jet Propulsion 
Laboratory, Eq. ( 5 )  - (8). (12) - (15). (18) - (42). (44a), (51) - (56).  and (58) have been programmed on the 704 digital computer. 
The nutation in longitude I,$ and the nutation in obliquity E - which are the smallest angles computed in the program - agree 
with the corresponding values in the American Ephemeris and Nautical Almanac to within lo* deg. This agreement i s  
sufficient for an accurate simulation of the Moon’s motion. 

1 
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I I .  TRlAXlAL POTENTIAL 

A s  long as  the  space  probe remains at large d i s t a n c e s  from the  Earth,  Moon, or planets ,  the  gravi ta t ional  

potent ia l  of t h e s e  bodies  can be  written simply as K / r .  If the  probe moves  c l o s e r  than approximately 4 radi i  from the 

center  of the  body, K/r will no longer be valid, s i n c e  probably the  primary m a s s  wil l  not  be  a homogeneous sphere .  

For example, observat ions of t h e  Moon over the  p a s t  one hundred y e a r s  ind ica te  that  the  lunar  body i s  a nonhomoge- 

neous ,  t r iaxial  e l l ipsoid;  i .e., t h e  Moon h a s  only three principal a x e s  of  iner t ia  ( the Moon i s  a n  el l ipsoid,  but not 

one of revolution). In order to accurately descr ibe  a mission in which a n  instrumented probe i s  e i ther  orbi ted around 

the  Moon (sa te l l i t e )  or landed on the  Moon's sur face  (sof t  impact), account  must  be taken of the true potent ia l  V .  

T h e  gravitational potent ia l  (per unit mass)  at a point P dis tan t  r from the center  of m a s s  O of any rigid body of m a s s  

M i s  

where G i s  universal  gravitation constant ,  I i s  moment of iner t ia  of M about  OP, and  A ,  B, C are  moments of inertia 

of M about  the  three principal a x e s  of iner t ia .  (Any rigid body h a s  at l e a s t  three orthogonal, principal a x e s  of 

inertia.) If we construct  a rectangular coordinate system, fixed in M ,  with origin a t  0 and a x e s  coincident  with the  

three principal a x e s  of M, then 

2 
I = A ( & ) ' + B  (-?&)2 + C  ($) 

1 1 1  I l l  where x , y , z 

respect ively.  Also, r = x r 2  + y 1 2  + z t 2 .  By making u s e  of (l), the  e x a c t  equat ions of motion of the  probe in the  

vicini ty  of the Moon can be derived. For all pract ical  purposes ,  the  higher  order terms in l / r4  can  be  dropped. 

a re  the  coordinates of P in th i s  sys tem and A ,  B ,  C a r e  taken about x , y , z , 
2 

2 



IPL Ttchnical Report No. 32-41 

111. EQUATIONS OF MOTION 

The proximity of the probe to the Moon makes it  advantageous to compute t h e  probe’s motion in  a coordinate 
I I  sys tem centered at the Moon. Although the  sys tem x ’ ,  y , z 

it is f ixed in  the Moon and consequent ly  would partake of the Moon’s int r icate  rotation. A convenient  coordinate  

sys tem t o  u s e  i s  o n e  with origin at the center  of the Moon, x a x i s  pointing in t h e  direct ion of the  mean’ vernal 

equinox’ of 1950.0 (i.e., the  beginning of the  Besse l ian  year  of 1950) and  t h e  y a x i s  so chosen as to  make the  x y  

plane paral le l  to t h e  mean equator of the Earth a s  of 1950.00. T h e  z a x i s  of t h i s  right-handed sys tem wil l  point  in  

the  direct ion of the  “mean” sp in  a x i s  of the  Earth.  Two reasons  for s e l e c t i n g  t h i s  par t icular  sys tem a r e  (1) the  

direct ions of t h e  coordinate a x e s  a r e  fixed in  s p a c e ,  and (2) the posi t ions of the  Moon (and hence  the Earth), Sun, 

and p lane ts  a r e  ava i lab le  in t h i s  sys tem (when centered a t  the  Earth). 

i s  so  centered,  computing i n  i t  would be unwise, s i n c e  

Let N e q u a l  the  to ta l  number of c e l e s t i a l  bodies  in a given region of s p a c e .  Denote  the  individual bodies  

by i = 1, 2, *.., N. Construct  a right-handed, rectangular coordinate sys tem (x ,  y, z )  with origin at the  center  of 

m a s s  of the Nth body (i = N) and a x e s  fixed i n  a n  arbitrary direction, re la t ive  to t h e  “fixed” s t a r s .  Let i = 1 denote  

the probe, a n d  a s s u m e  t h a t  the gravi ta t ional  potential of i = 2, 3, ..*, N i s  given by Eq.  (1). In addition to the 

gravi ta t ional  f o r c e s  a c t i n g  on i = 1, assume tha t  i t  i s  also ac ted  upon by a thrust  F. T h e n  the  equat ions of motion 

of the  probe, in  t h e  sys tem ( x ,  y, z ) ,  are: 

’ “Mean” signifies that the Earth’s nutation has  been ignored. 

’ The vernal equinox is that point on the celestial sphere (relative to the fixed stars) in the constellation Pisces at 
which the Earth’s equator and the ecliptic (orbital plane of the Earth) appear to intersect. (The autumnal equinox is the other 
intersection of the ecliptic and equator, 180 deg from the vernal equinox, in the constellation Virgo). Since the Earth’s orbit 
and equatorial plane are continually changing (by small amounts, relative to  the fixed stars), the position of the equinox is 
also continually changing. 

3 
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N -  1 -I 
x1 - x i  3 Fr 

p . 3  - ~ 

ml 
3 r .  5 

‘il i = l  
r .  Z l  

where 

I l l  Here, x i ,  y i  , z i  are the coordinates of the probe measured in a rectangular coordinate system coincident with the 

principal axes in the ith body (i = 2, 3, 

are unit vectors along x ,  y, 2, respectively; mi denotes the mass of the i th  body; ri i s  the distance between mN and 

mi (rN = 0); r i l  i s  the distance between ml  and mi(rll = 0). Finally, 

,A’), and i; is! kz! are unit vectors along these respective axes; i, i, k 

4 

P = A i  xi! if + B i  y; i,! + Ci 2: ki! 
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r i  = i x i +  i y . +  k z .  

r i l  = i ( x l  - x i )  + i(yl - y i )  + k ( z l  -zi) 

= ii xL! + j i  I I  yi + klz ' !  

(i = 1, 2, * e -  , N  - 1) 

(i = 2, 3 , . . . , N )  

3 
.. ' m i  

where 

In order t o  apply the  above formalism to the hloon, we l e t  N = 4 and adopt  the following convention: Let, 

i = 1 denote  t h e  probe 

2 denote t h e  Earth 

3 denote  t h e  Sun 

4 denote t h e  Moon 

Since t h e  probe wil l  be in the  vicini ty  of the hloon, the Earth and  Sun c a n  be regarded as perfect  homogeneous 

s p h e r e s  (i .  e., point masses) ,  so tha t  A, = B2 = C, ,  A ,  = B3 = C 3 .  Also, the m a s s  of the probe (ml) will  be 

negl igible  compared with the m a s s e s  of the Earth,  Sun, and Moon. Therefore, Eq. (2) become: 



~ 
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where 

H = - m q  3 A + B + C  4 + -- l5 2 r ;  1 (;)2+ B (+)2+ C (.)I 
‘1 2 2  ‘1 

I l l  1 1 1  
Here, x1 , yl, z1 now denote the coordinates of the probe in the coordinate system x , y , z , which i s  centered 

at the Moon and aligned with the Moon’s principal axes of inertia. Also, 

2 2 2 2 12 12 12 r 1  = x1 + y1 + z1 = x1 + y1 + z1 

I l l  The quantities a.. define the transformation between x , y , z 

identify with that of 1950.0 (described above). Thus, 

and the coordinate system x ,  y, z ,  which we now 
t1 
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IV. SELENOGRAPHIC COORDINATES 

When the Moon was sti l l  in a liquid state, the tidal waves created on i ts  surface by the Earth’s gravitational 

field distorted the Moon’s shape and transformed i t s  rotational energy into heat energy (by friction), thereby reducing 

i t s  axial rotation and eventually forcing it to present the same face to the Earth. As the Moon solidified, it acquired 

a permanent disfiguration, chiefly in the form of a bulge on the side facing the Earth. This deformation caused the 

Moon to undergo small, pendulous oscillations, which sti l l  exist and which are called “physical librations!’ The 

principal axes of inertia and hence the axes x I l l  , y , z are assumed (by the astronomers) to lie, respectively, 

through the center of the bulge toward the Earth, a t  right angles to this in a direction opposite to the Moon’s orbital 

motion, and mutually perpendicular to the aforementioned (refer to Fig. 1). Thus ,  the x I ,  y 

equatorial plane and the z axis coincides with the Moon’s axis of rotation. The x i  axis passes through the Sinus 

Medii (Central Bay) on the lunar surface. 

plane i s  the Moon’s 

ORB ITA L 
MOTION 

Fig. 1. Definition of selenographic latitude and longitude of Earth 

7 
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T h e  orientation of the Moon as i t  orbi ts  the  Earth i s  i l lus t ra ted  in  F ig .  2 and 3. Here, i t  is assumed that the I 
phys ica l  l ibrat ions a r e  zero. (The  amplitude of t h e s e  l ibrat ions never  e x c e e d s  OO.04.) Figure  2 is a view of t h e  

Earth-Moon sys tem as viewed from a point in the ec l ip t ic  (which i s  normal t o  the  paper), 

Fig.  2. Earth-Moon sys tem viewed from ec l ip t ic  

T h e  incl inat ion of the Moon’s orbit t o  the  ecl ipt ic  u may vary as much as  OO.30 ,  whereas  61 < OO.043. Since  t h e  

incl inat ion of the h!oon’s equator t o  i t s  orbi ta l  plane, a+ I, i s  not zero  (*  6’40’1, a n  observer  on the  Ear th  would, 

a t  one time, see the north pole of the  Moon (position A in F ig .  2) and  half a month la te r  see the  south pole (posi t ion 

B). T h i s  apparent  oscillation of the Moon’s poles  is ca l led  the “opt ical  l ibrat ion in latitude.” F igure  3 s h o w s  the  

Earth-Moon sys tem as viewed from a point  above  the Moon’s orbital plane. S ince  the Moon moves in  a n  e l l i p s e  

around t h e  Earth, i t s  orbital angular veloci ty  i s  not constant  ( the Moon’s s p i n  angular  veloci ty  i s  pract ical ly  con- 

s tant) .  Therefore ,  to an observer on the  Earth,  the  Moon would appear  t o  o s c i l l a t e  about  its sp in  a x i s  z ’  (refer to  

F i g .  3). T h i s  apparent  oscillation i s  ca l led  t h e  “opt ical  libration in longitude.” T h e  opt ica l  l ibrat ions in la t i tude  

and longitude vary in magnitude between, approximately, f 8 deg. 

8 
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,Y' 

Fig. 3. Earth-Moon system viewed from above orbital plane 

Like the optical librations, the physical librations occur in both longitude and latitude. It is evident from 

Fig. 2 and 3 that the optical librations have a period of a month (approx 28 days). The physical libration in 

longitude, however, has a period of one year, and the physical libration in latitude has  a period of approximately 

s ix  years. The physical librations for the years 1956-1961 are shown in Fig. 4. Even though these librations are 

negligible compared with the optical librations, they are st i l l  essential to an accurate simulation of the Moon's 

motion. Thus, a libration of only OO.02 results in a displacement of 600 meters on the Moon's surface. This distance 

might become critical in the event of a vehicle soft-landing at  a designated point on the lunar surface. 

In the absence of all librations, the z' axis would always point to the center of the Earth. Its deviation 

from this direction is due to the combined effect of both optical and physical librations. The motion of the z' axis 

can be described by means of the Earth's selenographic coordinates. The Earth's selenographic coordinates are 

the position coordinates of the Earth measured in a coordinate system fixed in the Moon. Here, the Moon-fixed 

system is simply z , y , z . The Earth's selenographic latitude p, is the angle that the l ine  connecting the centers 

of Moon and Earth makes with the z' y '  plane (refer to Fig.1). The Earth's selenographic longitude he i s  the angle 

between the plane and the plane containing the Earth -Moon line and the z ' axis; he i s  measured in the z y 

plane. The positive directions of p, and he are indicated in Fig. 1. If the Moon did not librate then p, P A, P 0. 

/ / /  

I z 

The angles p,, he are computed in terms of the observable quantities: i, A, a ' ,  A,  4. Here, A and 4 are 

the right ascension and declination, respectively, of the Moon; i, A, Q' are Euler angles describing the orientation 

9 
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i 

- u + - u  - - - u  1 1 1  

of z , y , z 

(described above), except that the positive z axis points in the direction of the true (the Earth’s nutation is not 

relative to the se t  of axes z, y,  z . Here, x ,  y,  z is similar to the coordinate system x, y, z of 1950.0 
% 

I 

I 
I 
I 

- %  ignored) equinox 3 of date (i. e., the position of the equinox at  any specified instant, or date) and the z y plane i s  

parallel to  the Earth’s true equator of (the same) date (refer t o  Fig. 5). 

N 
z 

4 

TO CENTER 
OF EARTH 

TRUE EOUINOX 
OF DATE 

Fi 5. Definition of i, R’,  A, A ,  4 

It can be shown that the Earth’s selenographic latitude and longitude are given by 

sin p, = sin i &(A - R ’ )  COS 4 - COS i sin 4 

TL vernal equinox. 

11 
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-sin (A - 0 ) tan P, 
A, = sin-’ [ sin ~ ] + sin-’ (z) - A (6) 

where cos $J = - sin i cos (A - 0 ’), It is always true that 1 pel < 8 deg, I Ae I < 8 deg. Figure 6 shows the 

selenographic coordinates R p e  = 2 ‘  (R = mean radius of Moon = 1738.11 km) and R A, I y ’  plotted on the Moon’s 

surface for May 1960. 

The landing of a probe a t  a designated spot on the Moon’s surface requires that the probe’s selenographic 

coordinates be known. The probe’s selenographic latitude p and longitude A are defined in Fig. 7. Here, 
P P 

2 ;  
s i n  p = 

P 1 

/ 

y; ”1 , cos h = 
P 1 P 1 

sin A = 

(7) 

( x i 2  + y;”) (.;” + y;’) 

I I I  where x l ,  yl, z1 are computed from Eq. (4). 
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- 240 - I60 - 80 

8 0  

- 80 
9 0  

MAY l o  

MAY 2 0  0 

80 160 2 4 0  km 

0 19 

O 18 

29 
MAY 3 0 0 

30 
M A Y 4 0  0 

31 

5 0  

6 0  

2' 

240 km 

27 
2 0 8 0  

I 60  

80 

SELENOGRAPHIC COORDINATES 
OF THE EARTH: R p e M  Z , 
RX.M y' 

MAY 1960, 0 h r ,  UT 

2 6  
0 25 

0 

0z4 
23 

0 

0 22 

0 21 

0 
IO 

I6 

I5 
0 

13 14 

0 
I I  

0 
I2 

17 

Fig. 6. Selenographic coordinates of the Earth: = ', R he = y'. May 1960, 0 hr, UT ~ 

! 
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Fig. 7 .  Selenographic coordinates of probe 

14 
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V. THE TRANSFORMATION COEFFICIENTS all 

The coefficients a . .  in Eq. (4) describe the transformation from the system z, y, z of 1950.0, previoasly 
81 

I '  defined, to the Moon-fixed system z', y , z . This transformation is  the net resalt of three separate coordinate 

transformations, which are given below. First, it is necessary to introdace a foarth system z, y, z, which is similar 

to z, y, Z ,  except that x points to the mean eqainox of date and the z y plane i s  parallel to the Earth's mean equator 

of date. We let X' denote the colamn vector { x '  y ' z' 1 ,  and similarly for the other three systems. Then the trans- 

formations are: 

- - -  
- - -  

* x = a' X' 

x = a  x 
x = a x  

- - -  
- -  

I - -  where u , U, a are the transformation coefficient matrices. Combining (9), (lo), (11) gives 

X' = (2 a')" x = a x  

1 % -  which is Eq. (4). In order to determine a = (a . . ) ,  we must first investigate a , a, a. 
81 

The transformation (9) is illastrated in Fig. 5 (if one ignores A, 4, p c ,  X c  1. Making ase  of spherical 

trigonometry, i t  i s  easy to show that 

ai1 = cos R '  cos A - s in  Q' sin A cos i 

a i l  = cos n' cosA + cos a' sin A cos i 

ai1 = sin A s i n  i 

aiz  = - cosR'  s i n h -  s i n n '  cosA c o s i  

a i z  = -sin n' sin A + cos Q' COS A cos i 

a i z  = cos A s i n  i 

ai3 = sin Q' s in  i 

a&, = --cos n' sin i 

ai3 = cos i 

(13) I 

15 
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The inclination of the ecliptic to the Earth’s equator is called the obliquity. The existence of a mean 

%, 
- 

equator and true equator, of date, implies the existence of a mean obliquity E and a true obliquity E , of date. The 

difference, E - E , is called the nutation in obliquity E. I % , -  

N 

z 

I N 

Q 
Y 

4 
MEAN 

EQUINOX 
OF DATE 

L 

CENTER 
OF MOON 

I /  

-F 

Fig. 8. Definition of mean and true obliquity 

Z 

CENTER 
OF M O O N 7  

/ 
x / TRUE EQUINOX 

OF DATE 

Here, the X Y plane is parallel to the plane of the ecliptic. The angle $J, which is measured in this plane, is called 

the nutation in longitude. If we denote the column vector { X  Y 2) by X e ,  then 

- - 
X = B X e  x =  e x e  

Combining the above gives 

%, % , % ,  - 
x = C B - ’  x = a x (loa) 

which is Eq. (10). The coefficients Bii  and Cii can be derived from Fig. 8a and 8b, respectively. Thus 

16 
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I 

Since 2 = C B-', therefore 

t 

?r 

a l l  = cos $.b 

?r - 
a I 2  = cos E sin $.b 

?r -u "13 = sin E sin $J 

- 
-4 

o~~ = -cos E sin $J 

- - ?r 
o~~ = COS E COS E cos $ + sin E sin 2 

- * - 
-2 

023 = cos E sin E cos 3 - sin E cos E 

- ?r 
031 = -sin E sin $J 

R - * - ?r 

a33 = sin E sin E cos $J + cos E cos E 

In going from the mean equator and equinox of date to the mean equator and equinox of epoch (i. e., a spec- 

ified date), as exemplified by Eq. (111, use i s  made of the geometry in Fig. 9. 

17 
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CoM = r / 2 - C o  ECLIPTIC OF 
DATE 

CM E Z + H/2 
ECLIPTIC OF 

EPOCH 

MEAN EQUATOR 

C- MEAN EQUATOR 
OF DATE 

OF EPOCH 

Fig. 9. Definition of mean equator and equinox of date and epoch 

The lines in Fig. 9 are great circles on the surface of a sphere, with center a t  the center of the Moon. The positive 

z axis passes through the point C,, and the Z a x i s  through C. The y axis l ies  in the C,M plane, and the y axis in 

the CM plane. The notation C,, z, 8, for the angles defined in the figure, is standard. Employing spherical trig- 

onometry, it is easy to show that 

- 

- 
all  = -sin c0 sin z + cos 5, cos z cos e' 

a12 = sin C o  cos z + COS 5, sin z COS 0 

a13 = COS 5, sin 0 

a21 = -cos C0 sin z - sin 5, cos z cos 6' 

a22 = cos 5, cos z - sin C 0  sin z cos 0 

- 

- 

- 

- 
z 

23 = -sin 5, sin 8 a 

a31  = -COS z s i n  0 

a32  = -sin z sin e - 

- 
a33 = e 

J 

18 

i 

7 - 
all  = -sin c0 sin z + COS 5, COS z COS 0 

CoM = r / 2 - C o  ECLIPTIC OF 
DATE 

CM E Z + H/2 
ECLIPTIC OF 

EPOCH 

MEAN EQUATOR 

C- MEAN EQUATOR 
OF DATE 

OF EPOCH 

Fig. 9. Definition of mean equator and equinox of date and epoch 

The lines in Fig. 9 are great circles on the surface of a sphere, with center a t  the center of the Moon. The positive 

z axis passes through the point C,, and the Z a x i s  through C. The y axis l ies  in the C,M plane, and the y axis in 

the CM plane. The notation c,, z, 8, for the angles defined in the figure, is standard. Employing spherical trig- 

onometry, it is easy to show that 

- 

- 
a12 = sin C o  cos z + cos 5, sin z COS 0 

a13 = COS 5, sin 0 

a21 = -cos C0 sin z - sin 5, COS z COS 6' 

a22 = cos 5, cos z - sin C 0  sin z cos 0 

- 

- 

- 
(16) 

- 
a32  = -sin z sin e 
- 
a33 = e 

18 
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Since the desired epoch is 1950.0, the quantities co, z, 6’ are given in the literature as 

# r co  = 00.64027694 T + OO.838888(lO”) T 2  + 00.4972(105) T3 

z = 00.64027694 T + 0°.30361111(10-3) T2 + 0°.5333(10-5) T3 

0 = 00.55674944 T - 00.1183333(10-3) T 2  - 00.11555(10*) T3 

where T is  measured in Julian centuries (of 36525 days) from January 1.0: 1950. 

- 
A simpler, and only slightly less accurate, method for computing the  a . .  is ‘1 

- 
all  = 1.00000000 - 0.2%97(10’3) T 2  - 0.130(10-6) T3 

-al2 = -0.02234988 T - 0.676(10’5) T2 + 0.221(10-5) T3 O21 = 

aal = -al3 = -O.971711(lOz) T + 0.207(10-5) T 2  + 0.%(10-6) T3 

- - 

- - 

- 
a22 = 1.00000000 - 0.24976(10-3) T2 - 0.15(10-6) T3 

- - 
a32 = 

023 = -0.10859(10-3) T2 - O.3(10”) T3 

- 
a33 = 1.00000000 - 0.4721(10*) T 2  + 0.2(10-7) T3 

Here, T is measured in Jdian centuries from January 1.0, 1950. (Eq. 17 and 18 appear in Ref. 13.) 

I - -  Having now determined a , a ,  a ,  the coefficients a = (a .. ) are then given by ‘1 

(17) 

(18) 

January 1.0 denotes January 1, 0 hr, UT, i.e.. the midnight which ushers in the day, January 1, at  Greenwich. This  
instant differs from 1950.0 by only a fraction of a mean solar day. 
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VI. FORMULAE FROM THE EPHEMERIS 

- - u -  
From Eq. (13) and (15) we see that a.'. = a.'. ( Q ' ,  A, i) and, with the aid of (14), ai i  = ai i  ( E ,  E, # ). The 'I ' 1  

defining expressions for these six quantities are lengthy and interrelated, and can be found among Ref. 1, 2 and 4. 

They are repeated here with modifications in notation, dimensions, and time scale. 

- 
cos i = cos ( I  + p )  cos ( E  + E )  + sin ( I  + p )  sin ( E  + E )  cos (a + Q+ #)  (21) 

- 
E = 23O.4457874 - 00.01301376 T - 0°.8855(10-6) T2 + 0°.503(10-6) T3 (23) 

E = A E (long period terms) + d E (short period terms) 

where 

AE = 0°.255833(10-2) cos R - O0.25(10-4) COS 2 0 

+ 0°.1530555(10-3) cos 2L + 03.61111(10-5) cos (3L - r )  

- 00.25(10-5) cos ( L  + r - 00.194444(10-~) cos ( 2 ~  - a) 

- 0°.8333(io-6) cos (2 r ' - n) 

(24) 

(25) 
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d 4 = -0°.56666(10-4) sin 2 a + 0°.18888(10-4) s in  ( (I - I") 7 

+0°.83333(10-6) s in  2 ( a - r '1 - O0.94444(10-5) s in  (2 (I - n) 

-0°.7222(10-5) s i n  (3 U - I? '1 + 0".41666(10-5) sin ( Q - 2L + 

+0°.30555(10-5) sin ( U + r '1 + 0".16666(10-5) s i n  2 ( a - L) 

+O0.16666(10-5) s i n  ( a  - r ' +  0) + 0°.16666(10-5) s i n  ( a - F'-  a) 

-0".13888(10-5) s i n  (3 a - 2L + r') - O0.1111(10-5) s i n  (3 a -I"- f2) 

') 

$ = A $ (long period terms) + d $  (short period terms) 

> 

I where 

1 A $  = - [0°.47895611(10-2) + 0°.47222(10-5) TI s i n  f2 

+ Oo.5805S(1O4) s i n  2Q - 0°.35333(10-3) s i n  2L 

+ 0°.35(10-4) s i n  (L - r) - 0°.13888(10-4) s i n  (3L - I') 

+ 00.58333(10-5) s i n  ( L  + r) + 0".3333(10-5) s i n  (2L - fl) 

(27) 

(28) 

(29) 

The remaining quantities are I 
I 

I = 1' 32.1' (30) 

n = 120.1127902 - 00.0529539222 d + 0°.2079S(10-2) T + 0°.2081(10~) T2 + 0°.2(10-5) T3 (31) 

a = 64O.37545167 + 13°.1763%5268 d - O0.1131575(10-2) T - 0".113015(10-2) T2 + O0.19(105) T3 (32) 

sin A = - s i n  (a + a+ $) csc i s in  (E + E ) ,  

COSA = - c o s ( a + a + $ ) c ~ ~ n ' -  s i n ( n + a + ~ ) s i n R ' c o s ( E + E )  
} (33) 
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, 

r ‘  = 2080.8439817 + 0°.1114040803 d - 0°.010334 T - 0°.010343 T2 - O0.12(10-4) T3 (34) 

L = 28OO.08121009 + OO.9856473354 d + 0°.302(10-3) T + 0°.302(10-3) T2 (35) 

l? = 2820.08053028 + O0.470684(10-4) d + O0.45525(10-3) T + 0°,4575(10-3) T2 + O0.3(10’5) T3 (36) 

In Eq. (23), (31), (32), (34), (35), and (36), T is measured in Julian centuries (of 36525 days) from January 1.0, 1950, 

and d is measured in Julian days from this same date. The quantities I, Q, a , and A are illustrated in Fig. 10. 

MOON 

-EARTH’S TRUE _ -  
EQUATOR 

Fig. 10. Definition of I ,  Q, a , and A 

The symbol n is the longitude of the mean ascending node of the Moon’s orbit measured in the ecliptic (x Y plane) 

from the mean equinox of date (+ X axis); a is the mean longitude of the Moon measured in the ecliptic from the 

+ x axis to the mean ascending node of the Moon’s orbit, and then along the orbit; r ‘ is the mean longitude of the 
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Moon's perigee, measured the same way as a . The quantities L and r are the mean longitude of the Sun and of the 

Sun's perigee, respectively. ( L  - is the mean anomaly of the Sun.) 

The quantities a, r, p are small perturbations in n, (I , I ,  respectively. (Refer to Eq. 20, 21, 22 and 33.) 

They appear in Ref. 4, and are repeated here with an altered time scale. 

w sin I = -00.0302777 sin g + O0.0102777 s in  (g + 2 ~ )  - Oo.305555(1O2) sin (2g + 2w) (37) 

r = -0°.3333(10*) sin g + 00.0163888 sin g' + 0".5(10*) sin 2w (38) 

p = -00.0297222 COS g + O0.0102777 COS (g + 2w) -0('.305555(102) cos (2g + 20) (39) 

where 

g = 215O.54013 + 13O.064992 d 

g ' = 3580.009067 + OO.9856005 d 

o = 196O.745632 + OO.1643586 d 

Here, d is measured in Julian days from January 1.0, 1950. 
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VII. SIMPLIFICATION 

A large amount of lunar exploration can be expected in the coming decade. During the period 1%0 - 70, T 

will lie in the range 

0.10 5 T 5 0.20 

so  that terms involving T 3  in Eq. (17),  ( 1 8 ) ,  (23),  (31),  (32),  (341, (35),  (36) can, for a l l  practical purposes, be 

omitted. 

An important quantity to  know is the velocity of the probe relative to the Moon-fixed system; i.e., 

v i  = ( i i  + 9; + i ;  ')%. The velocity components %; , f i ,  i; are obtained from Eq. (12) and (19): 

dX' da dX 
- -  - - X + a -  

dt dt dt 

where 

8 - -  2 
It is evident from Eq. (13), (15),  (18),  (20) - (42) that the elements of a , a, a are ultimately a function of T, T , 

and d. Since the desirable units of v i  are distance per second, the time derivative of these elements will be a 

function of 

d(d) 1 
- = -  dT2 2t 

- , and 
1 

- -  
dT - -  
dt P At P2 dt  4 
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t 

i decade 1%0 - 70, 

where p = 60 x 60 x 24 x 36525 and q = p/36525. Here, t is measured in seconds from January 1.0, 1950. For the 

3.15576(108) t 2 6.31152(108) sec  

Since the elements of ;are explicit functions of T and T2 (refer to Eq. 181, it is easily shown that 

< 0.7(10-11) sec-l 

The elements of Z are a function of F ,  E, and $J . It can be shown that 

In view of Eq. (15), 

The elements of a' are a function of 0' , i, and A, where A is given by Eq. (22). From page 51 of Ref. 2, 

(45) 

Computing the limits on the time derivatives of a , T, 0,  from Eq. (321, (381, (311, (37), respectively, i t  

follows that I d A / d t  I < 0.3(10-5) sec-l. Consequently, from Eq. (131, 
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We write Eq. (44) a s  da/dt = K + L + M, where K, L,  M correspond, respectively, to the terms in Eq. (44). Since each 

of the third-order matrices a , a ,  u i s  orthogonal, the maximum absolute value of any element of the product matrices 

(>)-' - (;)-', (ut) - '  

I - -  
i s  unity. Hence, 

lKjj I < 3 
at 

Consider the first term in Eq. (43). Let 

da 
- X = ( K + L + M ) X  = K X + L X + M X  = U + V + W  

d t  

(49) 

(50) 

The largest distance from the Moon a t  which v i  will be of practical interest i s  approximately 10 lunar radii: i.e., 

17,380 km. We let  the maximum absolute value of any element of X equal this distance. Then, from (49), it  follows 

that 

I Wii  I < 0.0141 meters/sec 

In view of the upper bounds on I Vi i  I and I W . .  I , little accuracy will be lost if V and W are considered negligible 
' I  

in Eq. (50). Hence, we shall write Eq. (44) a s  

5The orbital radius of a lunar satellite will probably not exceed 10 lunar radii. 
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. ( ; ) - I .  (;)-I - 
dt 

A further simplification can be made in the time derivative of a ' .  Since the a.'. are functions of a', i, A, 
81 

the elements of d a ' / d t  will be functions of the t ime  derivatives of these same quantities. In view of the upper 

bounds on I d o  ' / d t  I , I di/dt  I , I dA/dt I , given above, terms which contain dQ' / d t  or di/dt  can, for all practical 

purposes, be ignored. The elements of da ' /dt are then given by the expressions below. 

dA dA 
c o s n '  s i n h  - - - sin a' cos i cos A - - da; 1 - - -  

dt at at 

ah ah 
- 'U - sin Q'  s i n h  - - + c o s n '  cos i c o s A  . - 

dt at at 

dA 
- -., + sin i cos A . - 
at dt 

d 4 1  

ah dA 
sin Q' cos h . - - COS Q' cos i s in  A - - dah - - -  

dt at at 

dA 
sin i sin A - - 

dt at 

%2 - - -  

- -  0 
%3 

dt 
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where 

d(A)  da d 7  d R  d u  all 

dt at at dt at at 

+ - + - - - - -  - = -  

Here, 

aa 
- = 0.266170762(10-5) rad/sec - 0.3%07482(10”3) t rad/sec 
at 

(53) 

d r  

at 
(54) - -  - -0.153527294(109) COS g + 0.569494067(10-10) cos g ’  + 0.579473484(10-11) cos 2 w rad/sec 

an 
- = -0.106%9843(10-7) rad/sec + 0.729311779(10”3) t rad/sec 
at 

(55) 

d u  

at 

- -  - -0.520642191(10-7) cos g + 0.181177445(10-7) cos (g + 2 ~ )  - 0.106405785(10-7) C O S ( ~ ~  + 2 ~ )  rad/sec 

(56) 

where g, g ’  , w are given by Eq. (40) - (42). In Eq. (53) and (55), t is measured in seconds from January 1.0, 1950. 
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VIII. PRINCIPAL MOMENTS OF INERTIA 

The values of A, B, C obtained from the literature are computed on the basis of observations made of the 

Moon’s rotary and orbital motion. Thus, the ratio (C - A ) / C  depends on the orientation of the Moon’s rotation axis, 

while the quantity (3/2) C(B - A)/MR21 depends on the Moon’s annual libration in longitude ( ke) .  Here, dl = mass of 

Moon and R = mean radius of the Moon, as measured from the Earth. In addition, the quantity (3/2)(C/MR2) is a 

measure of the Moon’s density distribution, which i s  ascertained from the Moon’s orbital motion. Values of these 

three quantities are taken from Ref. 5 (pp. 158, 164, 166, and 168). 

C-A 

c 
- -  - 0.629(10-3) 

3 B-A 
- 0.59(10*) 

2 M R ~  

3 c  
- 0.5956 

2 M R ~  

(57) 

If values are assigned to M and R, then Eq. (57) can be solved for A, B, C. From Ref. 6 (p. 156), G = 0.6673(10-’0) 
meters3/kg sec  2 . From values of M e  /M (Me = mass of Earth), Re (= equatorial radius of Earth), 1 foot/international 

meter,and GMe (Earth radii)31min2, Ref. 7, one computes GM = O.48984463(l0l3) meters3/sec2. Combining this with 

the above valne of G, we get M = 0.73406957(1023) kg. Now, 

R = s D  

Re = (H. P.) D 

where D i s  the distance between the centers of Earth and Moon, s i s  the Moon’s semidiameter (angle subtended at  

the Earth’s center by R) and H. P. i s  the Moon’s horizontal parallax (angle subtended a t  the Moon’s center by Re ). 
Eliminating D gives 
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S 

Re R = -  
H .  P .  

where, R e  = 0.637827(107) meters. Values of s and H. P. for every half day are listed in Ref. 2 (pp. 52 - 67). 

Eight se t s  of values of s and H. P. were selected which corresponded to four locations of the Moon a t  apogee and 

four a t  perigee, in the months of January, February, November, and December. Substituting these in the above 

formula yielded eight values of R which differed a t  most by 0.034793 km. We adopt the following representative 

value of R :  R = 1737.880 km. Substituting M and R in Eq. (57) yields 

A = 0.8797655(1035) kg meters 2 

B = 0.8798527(1035) kg meters 2 

C = 0.8803192(1035) kg meters 2 

We can look forward to the time when extended observations of an artificial lunar satellite will yield 

significantly more accurate values of A, B, C. 
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